346 research outputs found

    Swift J1357.2-0933: the faintest black hole?

    Get PDF
    Swift J1357.2-0933 is the first confirmed very faint black hole X-ray transient and has a short estimated orbital period of 2.8 hr. We observed Swift J1357.2-0933 for ~50 ks with XMM-Newton in 2013 July during its quiescent state. The source is clearly detected at a 0.5-10 keV unabsorbed flux of ~3x10^-15 erg cm-2 s-1. If the source is located at a distance of 1.5 kpc (as suggested in the literature), this would imply a luminosity of ~8x10^29 erg s-1, making it the faintest detected quiescent black hole LMXB. This would also imply that there is no indication of a reversal in the quiescence X-ray luminosity versus orbital period diagram down to 2.8 hr, as has been predicted theoretically and recently supported by the detection of the 2.4 hr orbital period black hole MAXI J1659-152 at a 0.5-10 keV X-ray luminosity of ~ 1.2 x 10^31 erg s-1. However, there is considerable uncertainty in the distance of Swift J1357.2-0933 and it may be as distant as 6 kpc. In this case, its quiescent luminosity would be Lx ~ 1.3 x 10^31 erg s-1, i.e., similar to MAXI J1659-152 and hence it would support the existence of such a bifurcation period. We also detected the source in optical at r' ~22.3 mag with the Liverpool telescope, simultaneously to our X-ray observation. The X-ray/optical luminosity ratio of Swift J1357.2-0933 agrees with the expected value for a black hole at this range of quiescent X-ray luminosities.Comment: 5 pages, 3 figures, Accepted for publication in MNRA

    NuSTAR + XMM-Newton monitoring of the neutron star transient AX J1745.6-2901

    Get PDF
    AX J1745.6-2901 is a high-inclination (eclipsing) transient neutron star (NS) Low Mass X-ray Binary (LMXB) showcasing intense ionised Fe K absorption. We present here the analysis of 11 XMM-Newton and 15 NuSTAR new data-sets (obtained between 2013-2016), therefore tripling the number of observations of AX J1745.6-2901 in outburst. Thanks to simultaneous XMM-Newton and NuSTAR spectra, we greatly improve on the fitting of the X-ray continuum. During the soft state the emission can be described by a disk black body (kT∌1.1−1.2kT\sim1.1-1.2 keV and inner disc radius rDBB∌14r_{DBB}\sim14 km), plus hot (kT∌2.2−3.0kT\sim2.2-3.0 keV) black body radiation with a small emitting radius (rBB∌0.5−0.8r_{BB}\sim0.5-0.8 km) likely associated with the boundary layer or NS surface, plus a faint Comptonisation component. Imprinted on the spectra are clear absorption features created by both neutral and ionised matter. Additionally, positive residuals suggestive of an emission Fe Kα\alpha disc line and consistent with relativistic ionised reflection are present during the soft state, while such residuals are not significant during the hard state. The hard state spectra are characterised by a hard (Γ∌1.9−2.1\Gamma\sim1.9-2.1) power law, showing no evidence for a high energy cut off (kTe>60−140kT_e>60-140 keV) and implying a small optical depth (τ<1.6\tau<1.6). The new observations confirm the previously witnessed trend of exhibiting strong Fe K absorption in the soft state, that significantly weakens during the hard state. Optical (GROND) and radio (GMRT) observations suggest for AX J1745.6-2901 a standard broad band SED as typically observed in accreting neutron stars.Comment: Accepted for publication in MNRA

    The "K-Correction" for Irradiated Emission Lines in LMXBs: Evidence for a Massive Neutron Star in X1822-371 (V691 CrA)

    Full text link
    We study the K-correction for the case of emission lines formed in the X-ray illuminated atmosphere of a Roche lobe filling star. We compute the K-correction as function of the mass ratio 'q' and the disc flaring angle 'alpha' using a compact binary code where the companion's Roche lobe is divided into 10^5 resolution elements. We also study the effect of the inclination angle in the results. We apply our model to the case of the neutron star low-mass X-ray binary X1822-371 (V691 CrA), where a K-emission velocity K_em=300 +-8 km/s has been measured by Casares et al. (2003). Our numerical results, combined with previous determination of system parameters, yields 1.61Msun < M_NS < 2.32Msun and 0.44Msun < M_2 < 0.56Msun for the two binary components(i. e. 0.24 < q < 0.27), which provide a compelling evidence for a massive neutron star in this system. We also discuss the implications of these masses into the evolutionary history of the binary.Comment: 6 pages, 5 figures. Accepted for publication in Ap

    Discovery of two simultaneous non-harmonically related Quasi-Periodic Oscillations in the 2005 outburst of the black-hole binary GRO J1655-40

    Get PDF
    We studied the low-frequency quasi-periodic oscillations (LFQPOs) in the black hole GRO J1655-40 during the 2005 outburst, using data from the Rossi X-ray Timing Explorer. All LFQPOs could be identified as either type B or type C using previously proposed classification schemes. In the soft state of the outburst the type-C LFQPOs reached frequencies that are among the highest ever seen for LFQPOs in black holes. At the peak of the outburst, in the ultra-luminous state, the power spectrum showed two simultaneous, non-harmonically related peaks which we identified as a type-B and a type-C QPO. The simultaneous presence of a type-C and type-B QPO shows that at least two of the three known LFQPO types are intrinsically different and likely the result of distinct physical mechanisms. We also studied the properties of a broad peaked noise component in the power spectra of the ultra-luminous state. This noise component becomes more coherent with count rate and there are strong suggestions that it evolves into a type-B QPO at the highest observed count rates.Comment: 14 pages, 6 figures, 2 tables, accepted for publication in MNRA

    Ask The Machine: Systematic detection of wind-type outflows in low-mass X-ray binaries

    Full text link
    The systematic discovery of outflows in the optical spectra of low-mass X-ray binaries opened a new avenue for the study of the outburst evolution in these extreme systems. However, the efficient detection of such features in a continuously growing database requires the development of new analysis techniques with a particular focus on scalability, adaptability, and automatization. In this pilot study, we explore the use of machine learning algorithms to perform the identification of outflows in spectral line profiles observed in the optical range. We train and test the classifier on a simulated database, constructed through a combination of disc emission line profiles and outflow signatures, emulating typical observations of low-mass X-ray binaries. The final, trained classifier is applied to two sets of spectra taken during two bright outbursts that were particularly well covered, those of V404 Cyg (2015) and MAXI J1820+070 (2018). The resulting classification gained by this novel approach is overall consistent with that obtained through traditional techniques, while it simultaneously provides a number of key advantages over the latter, including the access to low velocity outflows. This study sets the foundations for future studies on large samples of spectra from low-mass X-ray binaries and other compact binaries.Comment: Accepted for publication in MNRAS. 13 pages, 6 figure

    The optical counterpart of the bright X-ray transient Swift J1745-26

    Get PDF
    We present a 30-day monitoring campaign of the optical counterpart of the bright X-ray transient Swift J1745-26, starting only 19 minutes after the discovery of the source. We observe the system peaking at i' ~17.6 on day 6 (MJD 56192) to then decay at a rate of ~0.04 mag/day. We show that the optical peak occurs at least 3 days later than the hard X-ray (15-50 keV) flux peak. Our measurements result in an outburst amplitude greater than 4.3 magnitudes, which favours an orbital period < 21 h and a companion star with a spectral type later than ~ A0. Spectroscopic observations taken with the GTC-10.4 m telescope reveal a broad (FWHM ~ 1100 km/s), double-peaked H_alpha emission line from which we constrain the radial velocity semi-amplitude of the donor to be K_2 > 250 km/s. The breadth of the line and the observed optical and X-ray fluxes suggest that Swift J1745-26 is a new black hole candidate located closer than ~7 kpc.Comment: 5 pages, 4 figures, accepted for publication in MNRA
    • 

    corecore